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the rheology of the upper mantle
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Crystalline solids respond to stress by deforming elastically and plastically, and by
fracturing. The dominant response of a given material depends on the magnitude of
the shear stress (o), on the temperature (77) and on the time (¢) ofits application. This
is because a number of alternative mechanisms exist which permit the solid to flow, and
its fracture, too, occurs by one of a number of competing mechanisms. Their rates
depend on oy, T"and ¢: it is the fastest one which appears as dominant.

In geophysical problems, pressure appears as an additional variable. At pressures
corresponding to depths of a few kilometres below the surface of the Earth, the mech-
anisms of fracture are the most affected; but at depths of a few hundred kilometres,
plasticity, too, is influenced in important ways.

This paper outlines the mechanisms of flow and fracture which appear to be relevant
in the deformation of materials of interest to the geophysicist, and the way pressure
affects them. The results are illustrated and their shortcomings emphasized by using
them to calculate the mechanisms of flow and fracture to be expected in the upper
mantle of the Earth.
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1. INTRODUCTION
1.1. Micromechanisms of flow and fracture

There exist a number of alternative mechanisms by which a crystalline solid may deform or
fracture. At low temperatures, it may fracture by cleavage before it yields. It may yield or twin,
exhibiting low-temperature plasticity, terminated by one of several sorts of ductile fracture. As the
temperature is raised, the solid may start to flow by power-law creep, and even, at sufficiently high
temperatures, by diffusional flow, until it fails by one of a number of ¢reep fracture processes.

Although none of these is completely understood, the underlying physics is sufficiently clear
that each can be modelled approximately. The models lead to constitutive laws: equations relating
the strain increment (or strain-rate) to the stress and temperature applied to the solid, and to
the time. These constitutive laws, when fitted to experimental data, give a useful description of
the mechanisms of flow or fracture in a form which can be used for solving boundary-value
problems.

In materials science and engineering, it is uncommon to regard the hydrostatic pressure as
an independent variable: it is almost always determined by the shear strength of the material
and seldom exceeds 1 9, of its bulk modulus (K). Because of this, the effect of pressure on mech-
anical strength is less studied than the effect of, say, temperature. However, in many geophysical
problems, pressure is as important a variable as temperature, and at great depths below the
Earth’s surface, the pressures are immense: at a depth of 400km, for instance, the pressure is
about K/10. ‘

Even small pressures (K/100 or less) have a large effect on mechanisms of fracture. A super-
imposed pressure of the same magnitude as the yield strength, for example, suppresses most
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60 M. F. ASHBY AND R. A. VERRALL

modes of ductile fracture. Cleavage fracture is an exception: as described in § 3, even a large
pressure does not suppress it entirely, though it may make it so difficult that some other mechanism
of flow appears instead.

Plasticity and creep are much less affected by pressures. In engineering design, it is normal
to assume that it is only the shearing, or deviatoric, part of the stress field which causes flow;
pressure has no effect whatever. There is some justification for this: neither low-temperature
plasticity nor creep are measurably affected by pressures less than K/100. But when the pressure
exceeds this value, the rates of flow are slowed, and pressure must be regarded, with the tem-
perature and shear stress, as an independent variable.

1.2. Mechanisms important in geophysical modelling

In understanding and modelling phenomena such as the flow of the Earth’s mantle, or the
creep of a large ice body, or formation of a salt dome, it is important to identify the dominant
mechanism of deformation, since this determines how the strains (and thus, displacements) are
related to the stress and temperature. We shall consider as an example the mechanisms involved
in the first of these problems, but the same mechanisms and method could be applied equally
well to the other two.

Geophysical and petrologic evidence suggest that the dominant phase in the upper mantle is
olivine Fogz—Fog; (Fogs is (Mgos5 Feo15)2 Si0,) (Birch 1969; Ringwood 1970), so that, as a first
approximation, the upper mantle can be treated rheologically as pure olivine. (There are
certain risks in this: in the low velocity zone, a shell of the upper mantle about 150km below
the surface, a basaltic phase in the mantle rock may melt, locally changing the mechanical
behaviour. Flow in the presence of a fluid phase cannot yet be modelled adequately, but it is
discussed in § 7.)

The mechanisms responsible for steady-state deformation in the upper mantle have been
considered by several authors (Gordon 1965, 1967; McKenzie 1968; Weertman 1970; Raleigh
& Kirby 1970; Carter & Ave’ Lallemant 1970; Stocker & Ashby 1973). This paper extends the
earlier work. In particular, it includes cataclastic flow as a mechanism; it incorporates recent
developments in the understanding of plastic flow and creep and in the way in which pressure
affects them; and it reviews and uses new data on the transport and mechanical properties of
olivine.

The mechanisms which appear to be most important in such problems are:

(@) Cataclastic flow (§ 3): to a materials scientist, this is not flow, but fracture. It is modelled as
repeated cleavage fracture together with the rolling of already fragmented particles over each
other.

(b) Low-temperature plasticity (§4): plastic deformation involving the gliding motion of dis-
locations.

(¢) Diffusional flow (§5): deformation by the diffusive motion of single ions, possible only at
high temperatures, and leading to flow which is, at least approximately, Newtonian viscous.

(d) Power-law creep (§6): a non-linear flow involving both the climb and glide motion of dis-
locations.

There exist several other mechanisms— twinning, for instance—which we do not understand
well enough to model in detail. Two of these are clearly of importance in the deformation of the
Earth’s crust and mantle, and are the major gaps in our present understanding. They are:

(¢) Fluid-phase transport (§7): flow in the presence of an aqueous fluid phase or a partial melt.
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FLOW AND FRACTURE IN THE UPPER MANTLE 61

(f) Creep with dynamic recrystallization (§7): creep accelerated, or made possible, by continuous
recrystallization.

Throughout the paper we are concerned with steady-state flow. When strains are small
(< 10-2), as they are when the upper mantle deforms in response to surface loads, for instance,
transient effects cannot be neglected (Goetze 1971). When the strains are large (> 1), as they
are in mantle convection, the contribution of transients depends on how rapidly the stress and
temperature change along a stream path; but for all but the most rapidly changing conditions, the
assumption of steady-state flow is a good first approximation.

TaBLE 1. MATERIAL PROPERTIES FOR OLIVINE

material property symbol value  units remarks
molecular volume per oxygen ion  £2° 1.23%x 102 m? This value used for diffusional flow,
at 1atm.} equation (5.1)
oxygen ion volume at 1 atm. o 1.15x10-2 m? This value used for activation

volumes, equation (5.9).

Burgers vector at 1 atm. b° 6.0x1071 m An average of several values—§4
melting point at 1 atm. Ty 2140 K
shear modulus at 300K and 1atm. p° 8.13x 101 Pa 1
T-dependence of shear modulus (Ty/p®) (du/dT) 0.35 — See §§ 2.2 and 2.3 for references
P-dependence of shear modulus dp/dP 1.8 — J
bulk modulus at 300K and 1atm. K° 1.27x 101 Pa 1
T-dependence of bulk modulus (Tyu/K®) (dK[dT) 0.26 — See §§ 2.2 and 2.3 for references
P-dependence of bulk modulus dK/dP 5.1 — J
pre-exponential, lattice diffusion D, 0.1 m?[s
activation energy, lattice diffusion @, 522 kJ/mol | The data are discussed in § 5 and
activation volumefoxygen ion V[, 0-1 — plotted in figure 9
volume
pre-exponential, boundary 8Dy 1x 10710 m3[s There are no data for olivine.
diffusion
activation energy, boundary Qs 350 kJ/mol  These are obtained by scaling:
diffusion 0Dyp = 10-°D,, and @y = 2Q,
activation volume/oxygen ion V|8, 0-1 —
volume
first creep exponent n 3 _ See § 6.4 for the rate equation used
for power-law creep. The values
second creep exponent ny 5 —_ refer to creep in shear >
first creep constant A, 0.45 — (6.4)) p ear (equation
second creep constant 4, 5.4x 10t —
activation energy for creep Q.. 522 — Q.. and V} are the same as those for
activation volumefoxygen ion V[0 0-1 lattice diffusion
volume
flow stress at 0K, (lattice Tl 3.3x102 —
resistance) /modulus . .
N . . This determines the flow stress at
- 1011 -1
p::s;}tcgz::ntlal for lattice e 0 s 0K and throughout the plasticity
activation energy for lattice AF, [ub? 0.05 — field -see also §4
resistance
flow stress at 0K, (obstacle Tolne 8x10-3 —
control) /modulus This determines the plateau in the
pre-exponential, obstacle control 7, 106 s~1 flow stress separating plasticity
activation energy for obstacle AF,[ub?® 0.5 — from power-law creep —see also § 4
control
cleavage stress in tension modulus  o/u 5x10-3 — See §3 and table 4

t latm = 10°Pa.
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62 M. F. ASHBY AND R. A. VERRALL

The following sections give, with explanation, a simple constitutive law for each mechanism
of flow, including the effects of pressure. They have the form

V4 =f(0-s>p> T':Mla M29 .o -)9 (1'1)

where 7y is the shear strain-rate, o the shear stress, p the hydrostatic pressure, 7" the absolute
temperature, and M, M,, etc., are material properties. Each section contains a discussion of the
material properties for olivine; they are summarized in table 1, which also serves to define the
symbols. In a later section (§8) the equations and data are used to construct deformation-
mechanism maps for olivine, both under laboratory conditions (constant pressure) and under
the conditions presumed to obtain in the upper mantle.

It is worth pointing out that, for all the mechanisms except cataclastic flow, pressure enters the
laws only through the influence on the material properties (M, M, etc.). For these mechanisms

one may write
Y =flos T, My(p), My(p) - . .).

Because pressure enters in this way, the Prandtl-Reuss generalization still applies, and the
equation can be written in a form suitable for numerical computation:

dei:i/dtl =f(a_'s> Ts Ml(ﬁ), Mz(p) N ) Si:;‘/2—a'—s’ (1'2)
where the function fis the same as before. Here de;; are the components of the strain increment,
dtis the increment of time, and & is an equivalent shear stress:

05 = (01— 0)* + (02— 09)* + (03— 01)*] = 4585 (1.3)

p is the hydrostatic pressure:
p=—%(01+0y+03) = —F043 (1.4)

and §;; is the deviatoric part of the stress tensor:
Si5 = (04— 304 011)- (1.5)

The quantities 0, 0, and o7 are the principal stresses, and o7 is the stress tensor.

It is not permissible to generalize equations for fracture in this way because pressure enters
the equations directly, not merely through its influence on a material property.

For later use, it is convenient to define an equivalent shear strain-rate:

V= FL(61—€2)%+ (é2—65)2 + (é3—€1)%] = 265 ¢y, (1.6)

where é;, €,, and é; are the principal strain-rates, and é;; is the strain-rate tensor.

2. EFFECT OF PRESSURE AND TEMPERATURE ON IONIC
VOLUMES AND MODULI

2.1. Effect of pressure on the ionic volume and Burgers vector

In alinear-elastic solid of bulk modulus K?°, the atomic or ionic volume varies with pressure as
2 = D exp{—(p—p)/KY, (2.1)
and the lattice parameter @ (and the Burgers vector b) as

a = a®exp{—(p—p°)/3K%, (2.2)


http://rsta.royalsocietypublishing.org/

'\
A\
JA \
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
L9
A

A
/%

THE ROYAL A

9

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FLOW AND FRACTURE IN THE UPPER MANTLE 63

where 2° and a° (or b?) are the values at atmospheric pressure ($°). Their change with temperature
is sufficiently small that we can safely neglect it. Data for 29, b° and K° for olivine are given in

table 1.
2.2 Effect of temperature and pressure on the moduli

To first-order, the moduli increase linearly with pressure and decrease linearly with tem-
perature. We write this in the form

wereli-[aar| S+ [ s =3
e N

where p° is atmospheric pressure, which, for almost all practical purposes, we can ignore.

The coefficients in the square brackets are dimensionless. Table 2 lists means and standard
deviations of the temperature coeflicients for a number of cubic elements and compounds. Most
are metals, though data for some alkali halides and oxides are included; data for olivine are
listed separately. The dimensionless coefficients are roughly constant. When no data are available
these mean values can be used.

TABLE 2. TEMPERATURE COEFFICIENTS OF THE MODULI

number of mean and value for
coefficient materials s.d. source of data olivine reference
—7;(]:‘ % 11 0.52+0.1 Frost & Ashby 0.35 Kamazama & Anderson
_La . (1973) (1969)
(1t = {$Cpu(Cy— Cpu)}H)
TydK . .
— 9 0.36+ 0.2 Huntington 0.26 Huntington (1958)
K dT. (1058)

(K= %(011"'2012))

TABLE 3. PRESSURE COEFFICIENTS OF THE MODULI

. _ _ dp dK K° KodyT
material 10710 x9%Pa 10712 K°[Pa [a; I:-&l—):l ? I:./F’E_ reference
Al 2.54 7.3 2.2 3.9 2.87 6.3
Ag 2.64 10 2.3% 6.2% 3.79 8.8
Au — 17.3 1.8t 6.4% — —
Cu 4.21 13.8 1.4 4.9 3.28 4.6
Ni 7.89 18.3 1.5 — 2.37 3.6
Na 0.23 0.83 1.61 3.6% 3.61 5.9
Li 0.35 1.3 1.0 — 3.71 — . )
aFe 6.4 16.8 1.9 4.0 2.63 5.0 Huntington (1958), Birch (1966)
Ge 5.2 7.73 1.3t 4.7% 1.49 2.0
Si 6.37 9.88 0.8+ 4.2% 1.55 1.2
NaCl 1.51 2.35 2.7% 6.0 1.56 4.2
LiF 4.58 7.0 1.4 — 1.53 2.2
MgO — 16.7 2.6 3.9 — —
SiO, — 3.7 2.9t — — —
Mg,SiO, 8.13 12.7 1.8 5.1 1.56 2.8 Graham & Barsch (1969),

Kamazama & Anderson (1969)
mean and s.d. 1.8:+0.7 48+1 25+1 4.3+2

# This is dCyy/dp. % This is d(3(Cyy + 2Cyy)) [dp.
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64 M. F. ASHBY AND R. A. VERRALL

Table 3 lists the moduli and their pressure-dependence for a number of materials, including
olivine. Again, the dimensionless coefficients are roughly constant; for materials for which no
data are available, it is reasonable to use the mean values indicated at the foot of the table.

3. CATACLASTIC FLOW BY CLEAVAGE AND BY ROLLING-PLUS-SLIDING

Almost all crystalline solids are capable of fracture by cleavage if the temperature is sufficiently
low; the f.c.c. metals and their alloys appear to be the only exceptions. A confining pressure
makes cleavage more difficult but does not necessarily prevent it. It is therefore possible to
develop large shearing displacements in a brittle solid, constrained by a pressure, by a process
of repeated fracturing, or cataclasis.

Once fracturing has started, so that the material has become fragmented, continued shearing
may simply break the fragments into ever smaller pieces. But there is an alternative: shearing
can continue if the fragments slide and roll over each other.

Simple, and approximate, models for these two alternative processes are considered in this
section. From them we learn that rolling is more pressure-sensitive than repeated fracturing,
which always becomes the dominant of the two processes when the confining pressure is large.

3.1. Cleavage fracture

The tensile stress which will overcome the interatomic forces in a perfect crystal, causing it to
separate on a plane normal to the stress axis, defines an upper limiting strength for a crystalline
solid. The many calculations of it are in general agreement (Kelly 1966; Macmillan 1972):
at an adequate level of accuracy

Oidens = (2ET/mb)E = 0.1 E, (3.1)

where I’y is the surface free energy, E is the Young modulus and 4 is the atomic size. Fracture
occurs when the tensile stress exceeds 07geq;-

The ideal strength is rarely realized. Almost always, small cracks pre-exist in brittle and semi-
brittle solids, or are created in them by slip as soon as yielding occurs. Such a crack concentrates
stress, so that the ideal strength is exceeded at its tip when the applied stress is still much less than
Oideal*

The stress at the tip of an atomically sharp crack of length 2C, in an elastic medium can be
calculated: it is (C,/b)* times larger than the applied stress. If the crack propagates when the
ideal strength is exceeded at its tip, the fracture stress in simple tension obviously becomes

oy = (2EInC,)3, (3.2)

a result first developed by Griffith (1924) using an energy argument, and later by Orowan
(1934, 1949) using an argument based on stresses (as here). In this equation, 21" is the energy
absorbed per unit area of crack advance; its minimum value is 2I";. One could, then, describe
the cleavage-fracture strength of a material by citing the values of Cy and I" which characterize
it. But for brittle minerals and rocks this is impractical; it is much easier to treat oy, the stress
at which cleavage fracture occurs in simple tension, as the material property, and use it to
calculate the conditions for fracture under pressure.
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FLOW AND FRACTURE IN THE UPPER MANTLE 65

3.2. Effects of pressure

Griffith (1924) himself extended the fracture criterion to include the effect of biaxial stress
states. A material can fracture by cleavage, even when the stress state is a compressive one,
because cracks orientated at an angle to the compression axis are loaded in shear, and therefore
have regions of tension and compression at their tips, as illustrated in figure 1. Suppose cracks
of equal size, in a biaxial stress field, are assumed to have their planes parallel to the unstressed
direction, but are otherwise orientated at random. A tensile component in the applied stress will
tend to open some of the cracks; but even if the stress field is compressive, any deviatoric com-
ponent in it will tend to make some cracks slide.

Le—
P
r—
: INTENSIFIED
—1 COMPRESSION —
REGION OF TENSION

t 1 bt i
o +p

Ficure 1. Cataclastic flow by cleavage. A deviatoric stress causes shearing displacements across the crack faces,
generating tensile stresses in the regions marked 7. If these reach a critical level, the cracks extend (broken
lines) and ultimately link, even when the stress field is a compressive one.

In either case, a tensile stress appears at the crack tip. Its magnitude can be calculated as a
function of the angle of orientation of the crack, assuming the crack faces to be frictionless. If
fracture occurs when the maximum value of this stress exceeds 07j4eq1, then the Griffith fracture
criterion becomes (after McClintock & Argon 1966)

oy =0y if —-30',<0'3<0'1;} (3.3)

(o0y—03)%+ 80y (0 +03) =0 if 03 < =30y,

where o is the largest (most tensile) and o5 the smallest principal stress.

McClintock & Argon (1966) argue that, in a triaxial field (o, > oy > 073) the intermediate
principal stress o, does not change the criterion. Cracks with normals in the o, — o3 plane are
exposed both to the largest tensile and largest shear stress; and (in an elastic solid) a normal
stress o, in the crack plane is not concentrated by the crack. The criterion above is then
unaltered.

5 Vol. 288. A.
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66 M. F. ASHBY AND R. A. VERRALL

The model predicts that the fracture strength in compression should be 8 times larger than that
in tension. Tests on rocks and minerals show it to be between 8 and 15 times larger (Jaeger &
Cook 1969), so while it is a useful approximation the model is incomplete. There are two
deficiencies. First, crack-plane friction is ignored. It can be included (McClintock & Walsh
1962) but the coefficient of friction required to fit experiment is unexpectedly large, perhaps
because the crack faces are serrated, and key together when under compression. More important,
the crack, when it extends under compression, deviates from the plane originally containing it.
Equation (8.3) is an initiation condition, not a criterion for propagation. Final fracture in
compression requires an understanding of the interaction between cracks that we do not yet
possess. It seems likely that the propagation conditions will depend on pressure in the same
way as the initiation condition does, and (as figure 1 suggests) that the two conditions merge
when the initial density of cracks is high; but there is no proof of this, and we must treat it as a
postulate.

Assuming this to be true, the fracture criterion for shear with a superimposed hydrostatic
pressure becomes, when expressed in terms of the shear stress oy and the hydrostatic pressure p:

oy = 05+ if < o0y}
] 1 p ) P f:} (34)
oy > 2(op)t if p> oy
where oy = }(0y,—0,), p = — (0, + 0,5+ 0,), and the principal stresses are p + o, p, and p — o5

Equations (3.4) are plotted in figure 2, which shows how the deviatoric stress required to cause
cleavage rises as the pressure increases. Note that cleavage is possible when the confining pressure
is large, provided that the shear stress, too, is large.

CRACKS EXTENDED

10

6
plo;

Ficure 2. Griffith criterion, no friction. A plot of equations (3.4), showing how the deviatoric stress required to
cause cleavage (or cataclasis) increases with pressure; o; is the fracture strength in tension.

3.3. Fracture data for olivine

The material property which appears in equations (3.4) is the fracture strength in tension,
oy Values for olivine-containing rocks can be deduced from two sources: the tests of Griggs,
Turner & Heard (1960) on dunite, and those of Handin (1966) on peridotite. Both were com-
pressive tests, with a confining pressure. We have used equation (3.3) to calculate the material
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FLOW AND FRACTURE IN THE UPPER MANTLE 67

property, o from their data. The results are tabulated in table 4. In the later calculations of this
paper, we have used the value of oy = 5 x 10~3 1 (table 1).

3.4. Rate law for cataclastic flow

We have modelled cataclastic flow as the result of two independent mechanisms. First
we assumed extensive flow is possible by fracturing if equation (3.4) is satisfied; in fracturing,
the rock becomes increasingly granulated. Secondly, we assumed that extensive flow is also
possible by the rolling and sliding (without further fracture) of the granulated rock. The
model for this second process is of the simplest and most approximate kind, and is illustrated by
figure 3.

TABLE 4. LOW-TEMPERATURE FRAGTURE OF DUNITE AND PERIDOTITE

T/°C T|Ty 0,/MPa 03/MPa oy/MPa 1030y fp reference
25 0.14 500 2300 650 8.1 Griggs et al. (1960)
25 0.14 500 2000 500 6.2
150 0.2 100 510 400 5.0 Handin (1966)
150 0.2 100 450 350 4.5

¢ o+ p

!

1

Fo

Ficure 3. Granular or previously fractured materials can deform by the rolling and sliding of the granules or
fragments over each other. Such flow is associated with a volume expansion, and because of this, it is more
strongly influenced by pressure than is cleavage.

Consider the granules to be cylinders which roll and slide at their points of contact. When the
array is sheared, it expands, doing work against the confining pressure and dissipating energy
in overcoming friction at points of contact, some of which must slide. This work must be supplied
by the applied shear stress. If the cylinders form a close-packed array, the largest stress is that
needed to start them shearing; thereafter they will continue to shear. It is easy to show that this
requires

o5 2 p (Js+3m), (3.5)
5-2
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68 M. F. ASHBY AND R. A. VERRALL

where the first term in the parentheses derives from the work done in dilating the material
against the confining pressure p, and the second is the work done against friction (coefficient
of friction ). The term in parentheses is of order 1, and remains so when the model is broadened
to describe the rolling of spheres instead of cylinders. Because of its more rapid dependence on
b, rolling is suppressed by even modest pressures, and is replaced by the fracturing mode of flow.
Cataclastic flow is incorporated into the calculations of Section 8 by assuming that:

v = oo if either the rolling or fracturing criteria (equations (3.4) or (3.5)) is satisﬁed,} (3.6)
7 = 0 if neither is satisfied. '

4. LOW-TEMPERATURE PLASTICITY

At low temperatures, or high rates of strain, plastic flow in crystalline solids is by slip. Dis-
locations — the ‘carriers’ of deformation — glide on slip planes; the combination of a plane and a
Burgers vector defining a slip system. If a polycrystal is to deform homogeneously without
fracturing, five independent slip systems must be available; but if non-homogeneous deformation
is allowed, so that although grains deform compatibly, they do not deform uniformly, then four
systems may be sufficient (Hutchinson 1976, private communication). This mechanism, which
we shall call low-temperature plasticity, is illustrated by figure 4.

e

{ ¥ ¥
ALV
dislocation \\
glide on
intersecting
planes

N

D>

Ficure 4. Low-temperature plasticity. The gliding motion of several sets of dislocations permits
compatible deformation of the grains of a polycrystalline solid.

4.1. Lattice-resistance and obstacle-controlled plasticity

Dislocations glide in many pure metals with great ease, and for that reason they are often very
soft. But in rocks and minerals this is not so. Many, like the silicates, are covalently bonded, and
the covalent bond is hard to break. The result is that the energy of the crystal fluctuates when
the dislocation moves (figure 5, top), and a force which is proportional to the slope of the energy—
distance curve is required to make it do so.
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FLOW AND FRACTURE IN THE UPPER MANTLE 69

Obstacles — impurities, precipitates, other dislocations, and so forth — obstruct glide also; but
their effect is observable only if the energy hill they place in the path of the moving dislocation
is steeper than that due to bond breaking (figure 5, bottom). Sometimes this is so, and the flow
strength of the crystal (which reflects an average of the behaviour of dislocations on four or five
slip systems) is said to be obstacle controlled. When it is not, the flow stress is lattice-resistance
controlled.

distance

Freure 5. The yield strength reflects the force required to move a dislocation. In silicates such as olivine, the
structure itself resists the motion, and the strength is said to be ‘lattice resistance controlled’ (a). Strong discrete
obstacles —such as other dislocations —can sometimes determine the yield strength, which is then said to be
‘obstacle-controlled’ (5).

Above 0K, thermal energy is available. It is then possible, by a straightforward application
of kinetic theory, to calculate the average drift velocity of dislocations through the crystal, and
hence the strain rate. The details of the calculation and of the result depend on the shape of the
energy hills of figure 5 (see, for example, Kocks, Argon & Ashby 1976). That which best fits
the available experimental data for lattice-resistance controlled glide leads to the rate equation

2
e ool S5(0- 3
where ¥, is a pre-exponential rate-constant, AF, is the activation energy for lattice-resistance
controlled glide, and 7, represents the flow stresses at 0 K.

Because of the small activation energy (AF)) the strengthening caused by the lattice resistance
drops as the temperature is raised, until its contribution becomes less than that of discrete
obstacles (figure 5, lower drawing). When they control the flow stress, flow is better described
by the simpler equation

7 = Yoexp{(—AFJkT) (1—0y/t,)}, (4.2)
where 7, is the pre-exponential rate-constant, AF, the activation energy for cutting or passing
the obstacle, and 7, is the flow stress at 0 K if the obstacles acted alone. In later calculations, we
select the slower of these two strain-rates: both lattice resistance and obstacle must be overcome,
and it is the more difficult of the two which determines the strength.

Dislocation glide is characterized by a long transient (work hardening), which continues
until a saturation flow stress is reached. In tensile tests, fracture occurs before saturation, and,
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because of this, dislocation glide is not usually thought of as a steady-state mechanism of flow.
But experiments in torsion or compression suggest that a saturation flow stress is ultimately
reached, though the strains involved are large (> 1).

4.2. Effect of pressure on low-temperature plasticity

High strength materials have a yield strength in tension which is lower than that in com-
pression — a phenomenon known as the ‘strength differential’ (s-d) effect. Recent experimental
studies of high strength steels (Spitzig, Sober & Richmond 1975, 1976) have shown that this is
simply the effect of pressure on the flow stress. Some of their data are replotted in figure 6, which
shows how the shear strength o of a steel at room temperature increases linearly with pressure.
The axes of this figure have been normalized: the ordinate by dividing o by o (the value at
p = 0) and abscissa by dividing p by the bulk modulus, K°. The slope is a useful dimensionless
measure of the pressure-dependence of the yield strength. For this steel, and for two others studied
by Spitzig et al., the slope was

d(og/od) [d(p/K®) = 6-10. (4.3)
(hydrostatic pressure, p = —%J;) [MPa
—500 0 500 1000 1500 2000
1.12 1 1 1 L 1 L 1 1 1 1
— 2000 £
108} 2
)
=
= I
: §
- &
b L =
s 104 11900 &
S Y a &
- o] 73
5 2
) >
1.0 ]
C <
o ' ~
- /8 1800
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—4 0 4 8 12
1000p/K©

Ficure 6. The pressure-dependence of the yield strength of a maraging steel. The yield strength increases linearly
with pressure. The data are replotted from Spitzig, Sober & Richmond (1976): O, tension; O, compression;
slope = 9.3.

The effect is far too large to be accounted for by the permanent volume expansion associated
with plastic flow and must be associated instead with a direct effect of pressure on the motion
of dislocations.

This pressure-dependence can be accounted for almost entirely by considering the effect of
pressure on the activation energies AF,, and AF, and the strengths #, and #,. It is commonly
found (see Kocks et al. (1976) for areview) that the activation energy for both obstacle and lattice-
resistance controlled glide scales as ub® and that the strengths 7 scale as u. For most b.c.c. metals,
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for example, the activation energy is close to 0.07 ub® and the flow stress at absolute zero is close
to 0.01x (Frost & Ashby 1973). As already described, both # and b depend on pressure,
increasing more rapidly than b® decreases. Pressure, then, has the effect of raising both the
activation energy and the strengths, 7.

At absolute zero, the shear stress required to cause flow is simply #. Using equation (2.3)
for the modulus, and neglecting the pressure p° we find by inserting the above proportionalities
into equation (4.2),

oy = to(p) = ag(1 + [gg—;‘] %) (4.4)
from which d (-;—0) / d (7(1’7,) - [%%]. (4.5)

Values of this dimensionless quantity are listed in table 3 for a variety of materials. The values
range from 2 to 9 compared with the measured coefficient of 6 to 10, but the measurements, of
course, were made at room temperature — about 0.2 7y; for many of the listed materials.

As the temperature is raised the picture becomes more complicated. The flow stress becomes,
on inverting equation (4.2),

o = 1o(p) {1 = [KTIAF,(p)]In (¥/7)} (4.6)

in which both #; and AF; increase with pressure, so that at fixed 7"and y, the predicted pressure
dependence of o increases with increasing temperature, and adequately accounts for the observed
effects.

There are other contributions to the pressure-dependence of low-temperature plasticity, but
they appear to be small. The presence of a dislocation expands a crystal lattice, partly because
the core has a small expansion associated with it (about 0.5 2 per atom length) and partly because
the non-linearity of the moduli cause any elastic strain-field to produce an expansion (Seeger
1955; Lomer 1957; Friedel 1964). It is this second effect which is, in general, the more important.
The volume expansion is roughly

V* = $AE® [y  per unit volume, (4.7)

where AE® is the elastic energy associated with the strain-field. If the activation energy which
enters the rate equations is largely elastic in origin, (as it appears to be) then during activation,
there is a small temporary increase in volume, V*. A pressure further increases AF by the amount
pV*. Because they are small, these contributions are neglected in the present treatment.

4.3. Low-temperature plasticity of olivine

The slip systems in olivine deformed at temperatures up to 1250 °C have been determined by
electron microscopy (Phakey, Dollinger & Christie 1972) and optical examination (Raleigh
1968; Carter & Ave’ Lallemant 1970; Young 1969; Raleigh & Kirby 1970). The review by
Paterson (1974) gives details of the primary and secondary slip systems, and of how temperature
affects their ease of operation and influences the resulting dislocation arrays. At 1000°C and
below, Phakey et al. (1972) observed straight dislocations, suggesting a large lattice resistance;
but above 1250 °C, they saw subgrains of the kind associated with power-law creep.

The slip system which operates easily at low temperatures is that involving dislocations with
b = 5.98 [001] A gliding on (100) planes. If this slip system is suppressed by proper orientation
of the crystal, then dislocations with Burgers vector b = 4.76 [100] A gliding on (010) planes
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appear. At 1000 °C these two systems operate with equal ease. Dislocations with a large Burgers
vector (b = 10.21 [010] A on (100)) appear above 800 °C, particularly in crystals orientated
so that the easy slip system is unstressed.

The calculations of § 8 require a value for the Burgers vector, though its value is not critical:
it is used largely as a scaling parameter. We have used b = 6 x 10~1°m (table 1) since this is
broadly typical of the observations. Much more important are numerical values for the low
temperature strength, since these are used to set the values of # and AF in equations (4.1) and
(4.2). There are three sets of useful observations.

First, the yield stress for a peridotite (60-70 %, olivine and 20-30 9, enstatite) of grain size
0.5 mm, was measured by Carter & Ave’ Lallemant (1970) between 325 and 740 °C. Secondly,
Phakey et al. (1972) obtained stress—strain curves at 600 and 800 °C for single crystal forsterite.
Four compression tests at 800 °C with different orientations of the single crystals produced yield
stresses ranging from 570 to 1300 MN/m? (5.7-13kbar). The highest value was obtained on the
specimen orientated to produce no stress on the easy slip system; we have used this because it is
the most representative of a polycrystalline material. Finally, some hardness data for olivine
exists (Evans, cited by Durham & Goetze 1976), and it is this which gives the most complete
picture of the low-temperature strength. It and the yield strengths are plotted on one of the
deformation maps of § 8.

The quantities AF, 7, and 7, were obtained by fitting equations (4.1) and (4.2) to these data.
We have assumed the frequency factor y, for olivine to be comparable with that for other materials
with a large lattice resistance. The frequency factor y, and the activation energy AF, were also
set by analogy with metals, but neither are important. The values used in later calculations are
listed in table 1.

4.4. Rate equations for low-temperature plasticity

The later calculations of § 8 use the equations for lattice-resistance and obstacle-controlled
glide as given in equations (4.1) and (4.2). The effects of pressure are included in exactly the way
described above, by making AF scale as #b® and # as y, and allowing x and b to depend on both
pressure and temperature as described in § 2. The consequences of doing so appear in the diagrams
of § 8 and will be discussed there.

5. DIFFUSIONAL FLOW

The plasticity described in the last section is observed at low temperatures and high stresses.
Consider now the opposite extreme: flow at high temperatures and low stresses. Under these
conditions metals and ceramics can deform by diffusion alone. Any deviatoric stress applied to
them causes ions to flow by lattice diffusion or diffusion in the grain boundaries in such a way
that the grains change their shape, permitting the stress to do work: it is this work that drives the
diffusive flux. The resulting deformation is called diffusional flow, and is illustrated by figure 7.

5.1. Diffusional flow

Creep by diffusion alone can be modelled in detail. A compressive stress raises the chemical
potential of ions on the boundaries of the grains. Provided that there is a difference in stress on
these boundaries, and that atoms can be detached from them and reattached to them freely,
matter will flow through or round the grains at a rate determined by diffusion.

Those who have calculated this rate (Nabarro 1948; Herring 1950; Lifshitz 1963; Raj &
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Ashby 1971) are in general agreement: when both lattice diffusion and grain-boundary diffusion
are permitted, the shear creep rate is

y = 42D, 0, QK Td, (5.1)

where d is the grain diameter and 2 the atomic volume. D,y is an effective diffusion coefficient,
which, for a one-component system, is given_by (see Raj & Ashby 1971):

Deff = -Dv[1 + (R(S/d) (DB/DV)]a (5'2)

Ficure 7. Diffusional flow. A deviatoric stress sets up differences in the chemical potential of ions at grain boundaries
which then diffuse as shown by the broken lines, depositing in the shaded bands.

where D, is the lattice self diffusivity, and §Dy that for boundary diffusion, multiplied by the
thickness of the boundary diffusion path, §. The equation describes a proper superposition of
two submechanisms which are sometimes distinguished: when lattice diffusion dominates, it is
called Nabarro-Herring creep; when, instead, boundary diffusion dominates, it is termed Coble
creep. (The two sub-régimes are separated in the diagrams of § 8 by a vertical broken line.)

The quantities Dy, Dy and 2 are well defined in one-component solids. In pure copper, for
instance, D, is the lattice self-diffusion coefficient, Dy is the boundary self-diffusion coefficient,
and £ is the atomic volume. In a two-component system, their definition is more complicated.
In ionic solids in which the diffusing species carry a charge, the appropriate diffusion coefficient
for transport through the grain is (Lazarus 1971; Ruoff 1965):

’ D D
VT (1—xa) D3+ x, D¥

where Y, is the atom-fraction of A in the compound. The important point made by the equation
is that it is the slower-moving component which determines the diffusion coefficient, and so
limits the creep rate; a similar conclusion holds for systems with more than two components. In
most oxides (including olivine) oxygen is the largest ion and the one which diffuses most slowly;

(5.3)
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it is oxygen diffusion which will usually control the creep rate. (The silicon-oxygen bond in
silicates may present special problems: it is so strong that oxygen might diffuse as an SiOf~
group, but measurements of creep and diffusion in olivine, reviewed below, do not support
this view.)

The value of £, too, depends on the nature of the diffusing species. We shall assume that the
diffusion of O%- limits the rate of mass transport in olivine. Then, on average, the arrival of one
oxygen ion at a grain boundary must be accompanied by % of a silicon and 4 of a magnesium or
iron ion. Their total volume is } of the molecular volume of (Mg, Fe),Si0, (1.23 x 10~2*m3);
this is the quantity listed as Q0 in table 1, and used in equation (5.1). But if (although this seems
very unlikely) diffusion involved the motion of SiO}~ units, then £2° would become the entire
molecular volume of (Mg, Fe),SiO,.

X

Ficure 8. Diffusional flow when strains are large. If grains change their neighbours, the sample can undergo a
large deformation while the grains alter their shape only slightly. At small strains (a) the diffusive paths, and
the creep rate, are identical with those of figure 7, but at large strains ((b) and (c)) the paths differ and the rate
is higher. Superplasticity in metals can be explained in this way.

Continuity of material during diffusional flow is maintained only if sliding displacements
occur in the plane of the boundary; indeed, the mechanism can be regarded as diffusion-accom-
modated grain-boundary sliding (Raj & Ashby 1971), but it is a rather special form of this com-
bined mechanism. It is implicit in the derivation of equation (5.1) that grains must suffer the
same shape change as the specimen itself, and that they may not change their neighbours. When
this constraint is relaxed (Ashby & Verrall 1972), a modified form of diffusional flow becomes
possible: the grains slide past each other in the way illustrated by figure 8, changing neighbours
and altering their shape (by diffusion) only where it is necessary for continuity to be maintained.
This modified mechanism, which appears to be that underlying superplasticity in metals and
ceramics, is simply a large-strain adaptation of the more familiar Nabarro-Herring and Coble
creep. The rate equation describing it (see Ashby & Verrall 1973) closely resembles that given
above. At a satisfactory level of approximation, it has the same form as equation (5.1), but is
faster by a constant factor of about 5.

Diffusional flow, then, whether of the small-strain or the large-strain type, is controlled by the
rate of diffusion of the slowest-moving species in the crystal. Pressure affects diffusional flow
mainly because it slows the rate of diffusion.

5.2. Effect of pressure on diffusional flow

Pressure slows diffusion because it increases the energy required for an atom to jump from one
site to another, and because it may cause the vacancy concentration in the solid to decrease.
The subject has been extensively reviewed by Lazarus & Nachtrieb (1963), Girifalco (1964)
and Peterson (1968); detailed calculations are given by Keyes (1963).
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Steady-state diffusional flow requires that all atomic species in the material must move. This
appears possible only by a vacancy mechanism, so we shall concentrate on this, and we shall
further limit ourselves to pressures of less than K[10 — roughly the pressure at the base of the upper
mantle. :

The application of kinetic theory to self-diffusion by a vacancy mechanism (see, for example,
Shewmon 1963) gives, for the diffusion coefficient

D = aa®n, T, (5.4)

where a is a geometric constant of the crystal structure (independent of pressure) and a is the
lattice parameter (weakly dependent on pressure in the way described by equation (2.2)). The
important pressure-dependencies are those of the atom fraction of vacancies, 7y, and the frequency
factor, I', which we discuss in order.

In a pure, one-component system, a certain atom fraction of vacancies is present in thermal
equilibrium because the energy (AG; per vacancy) associated with them is more than offset by
the configurational entropy gained by dispersing them in the crystal. But in introducing a
vacancy, the volume of thesolid increases by J;, and work pl;isdone against any external pressure, p.
A pressure thus increases the energy of forming a vacancy without changing the configurational
entropy, and because of this the vacancy concentration in thermal equilibrium decreases. If
we take

AG; = AGY +p1;, (5.5)
where the superscript zero means zero pressure, then
1y = exp{— (AGY+47) KT}, (5.6)

A linear increase in pressure causes an exponential decrease in vacancy concentration.

It is in the nature of the metallic bond that the metal tends to maintain a fixed volume per free
electron. Ifa vacancy is created by removing an ion from the interior and placing it on the surface,
the number of free electrons is unchanged, and the metal contracts. For this reason, the experi-
mentally measured values of ¥} for metals are small: about $£2° where £2° is the atomic volume
Strongly ionic solids can behave in the opposite way: the removal of an ion exposes the sur-
rounding shell of ions to mutual repulsive forces. The vacancy becomes a centre of dilatation,
which is why the observed values of V; are large: up to 20{ where £ is the volume of the ion
removed. There are no measurements for oxides or silicates; but, when the bonding is largely
covalent, one might expect the close-packed oxygen lattice which characterizes many of them
(among them olivine) to behave much like an array of hard spheres. Forming a vacancy then
involves a volume expansion of £, the volume associated with an oxygen atom in the structure.

We might, then, expect that ¥; should about equal £f, the oxygen-ion volume, in a silicate
like olivine, but there is a complicating factor. In a multi-component system, vacancies may be
stabilized for reasons other than those of entropy. Ionic compounds, for instance, when doped
with ions of a different valency, adjust by creating vacancies of one species or interstitials of the
other to maintain charge neutrality; pressure will not then change the vacancy concentration.
Oxides may not be stoichiometric, even when pure, and the deviation from stoichiometry is often
achieved by creating vacancies on one of the sub-lattices. The concentration of these vacancies
is influenced by the activity of oxygen in the surrounding atmosphere, so that it is not the net
pressure but the partial pressure of oxygen which determines the rates of diffusion. For these
reasons it is possible that the quantity V; in equation (5.6) could lie between 0 and £;.
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The jump frequency, too, depends on pressure. In diffusing, an ion, vibrating about a position
of equilibrium, jumps to a neighbouring vacant position in which its surroundings are identical.
In doing so, it passes through an activated state in which its free energy is increased by the energy
of motion, AG,,. The frequency of such jumps is then given by

I' =vexp (—AGL[kT), (5.7)

where v is the vibration frequency of the atom in the ground state (and is unlikely to depend on

pressure).
TABLE 5. ACTIVATION VOLUMES FOR DIFFUSION AND POWER-LAW CREEP

material structure V* [0 for diffusion  V*[€? for creep

Pb f.c.c. 0.8+0.1 0.76
Al o 1.35
Na b.c.c. 0.4+0.2 0.41
K — 0.54
In h.c.p. — 0.76
Zn 0.55+ 0.2 0.65
Cd — 0.63
AgBr rock salt 1.9+ 0.5 1.9

Sn tetragonal 0.3+0.1 0.31
P 0.56+0.1 0.44

Adapted from Lazarus & Nachtrieb (1963), Goldstein et al. (1965) and McCormick & Ruoff (1970).

In passing through the activated state, the ion distorts its surroundings, temporarily storing
elastic energy; and, if bonding is local, it breaks the bonds with some of its neighbours. In a solid
with non-local bonding, like a metal, one might expect that the elastic energy would account
for most of the activation energy of motion, so that (by the argument used in §4.2) it would be
associated with a maximum volume expansion,

Vo ~ 3AG, /24, (5.8)

per unit volume. Taking the activation energy for motion to be 0.4 of the activation energy of
diffusion, we find, typically, V;, = 0.2-0.492;, where £, is the volume of the diffusing ion.
Experimentally, ¥, appears to be smaller than this, suggesting that even in metals not all the
energy is elastic. And in solids like silicates with localized bonding, most of the energy of motion
must be associated with bond-breaking and will not produce a volume expansion.

Assembling these results we find

D = D°(1—2p[3K") exp (—pV* [k T), (5.9)

where D° = a(a%)?v exp (—{AG; +AG,,}/kT) and is the diffusion coefficient under zero pressure,
and V* =V +V, for intrinsic diffusion;
V* =V, for extrinsic diffusion.

Because experiments are difficult, there are few measurements of V*, and these show much
scatter. They have been reviewed by Lazarus & Nachtrieb (1963), Keyes (1963), Girifalco
(1964) and Goldstein, Hanneman & Ogilvie (1965). The results are summarized in the third
column of table 5, in which £, is the volume of the diffusing species: they lie between 0 and 20,

In summary, both physical reasoning and experiments lead to the conclusion that activation
volumes could vary between zero (for a covalent solid in which diffusion is extrinsic) to perhaps
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20, (for astrongly ionic solid). For silicates, in which oxygen is the slow-diffusing species, we might
expect it to lie between zero (if the oxygen sub-lattice has chemically stabilized vacancies on it)
and £, the ionic volume of oxygen (if it does not). These are the two limiting values used in the
calculations of § 8.

temperature/°C
2000 1200 800
_10 1 1 1 - 1 1
L Ty
= (1) D = 0.1exp— (522/RT)
b L
% 0k (2) Stocker & Ashby (1973)
N i (3) Goetze & Kohlstedt (1973)
&
"‘30 1 1 1 Il 1
4 6 8 10

100K T

Ficure 9. Diffusion of oxygen in olivine. The full line is a plot of the diffusion equation (equation (5.10)) used in
§ 8 to calculate the rates of dilfusional flow. Data: +, Goetze & Kohlstedt (1973); ©, Borchardt & Schmaltzried

(1972); A, Barnard (1975)
5.3. Dijffusion in olivine

The meagre data for oxygen transport in olivine, and some attempts to fit an equation to them,
are shown in figure 9. Borchardt & Schmaltzried (1972) reported that the oxygen-ion diffusivity
at 1320 °C was less than 10~ m?[s; Goetze & Kohlstedt (1973) inferred diffusion coefficients
from the kinetics of the annealing of prismatic dislocation loops; and Barnard (1975) measured
oxygen ion diffusion by a proton activation method.

Studies of power-law creep in olivine, discussed in the next section, are best described by an
activation energy of Q.. = 522k]J/mol. If we assume that this creep is diffusion controlled, then
Q.. can be identified (after minor corrections for the temperature dependence of the modulus,
which we shall ignore) with the activation energy for mass transport in olivine — a process
which is almost certain to be limited in its rate by oxygen-ion diffusion. We have, therefore,
fitted a line with this slope to the data (full line on the figure) giving

D[(m?[s) = 0.1exp (—522k]J/RT). (5.10)
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Also shown are plots of the diffusion equation proposed by Goetze & Kohlstedt (1973) (broken
line), and of that by Stocker & Ashby (1973). At high temperature they are all very close, and
even at low temperatures the differences are small when compared with scatter in creep and
other data.

This diffusion equation predicts a melting point diffusivity for O~ of 2 x 10-*4m?[s, compared
to an average of around 10-14m?/s for a number of other oxides which, like olivine, have a close-
packed oxygen sublattice, and in which oxygen is thought to diffuse as a single ion, not a complex
of ions (Stocker & Ashby 1973). Because the two numbers are similar we believe oxygen diffuses
as a single ion, not as an SiOf~ complex.

There are no measurements of the pressure-dependence of diffusion in olivine, or in any other
oxides. For reasons explained in the previous section, we have used two limiting values for the
activation volume, V*: zero and £;, the oxygen-ion volume in olivine.

The grain-boundary diffusion parameters had to be inferred. In those materials for which
both volume and grain-boundary measurements have been made, the activation energy for
grain-boundary diffusion is about two thirds of that for volume diffusion. This ratio was applied
to olivine. The grain boundary width was set equal to twice the average Burgers vector. Although
the pre-exponential coefficient for grain-boundary diffusion is generally less than that for volume
diffusion, the two were equated, somewhat increasing theimportance of grain-boundary diffusion
relative to volume diffusion.

5.4. Rate equation for diffusional flow

In the calculations of § 8, we have used equations (5.1) and (5.2), allowing 2 and £, to vary
with pressure according to equation (2.1), and D to vary with pressure according to equation
(5.9). The value of V* used in each calculation is listed on the figures.

6. POWER-LAW CREEP

Between the high-temperature régime of diffusional flow and the low-temperature régime
of plasticity, materials — ceramics as well as metals — creep, but in a different way. The strain-
rate varies as a power of the stress, the power ranging between 3 and about 10. Microscopy shows
a complicated pattern of flow: superimposed on a uniform creeping of the grains is a non-uniform
deformation caused by sliding at their boundaries. Electron microscopy shows that dislocations
are involved; they contribute to the deformation by gliding, but, at least at high temperatures,
they then aggregate to form cells. These cells have a rather small angular misorientation, perhaps
2°, between them; and their size depends on the stress. This mode of deformation is known as
power-law creep. It is illustrated by figure 10.

6.1. Diffusion-controlled power-law creep

The origin of the power-law behaviour can be understood if the cells are thought of as little
grains. Then a kind of diffusional flow is possible using the cell, instead of the grain, boundaries
as sources and sinks. Because the cells are smaller, the creep rate is faster than before; and because
the cell size itself depends on stress, the creep is no longer Newtonian-viscous. Observations on
metals show that the cell size, d,q,, is, very roughly, given by

deenn/b) % pfo,
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where b is the atom size, about 2%, Inserting this into equation (5.1) gives the power-law creep
equation:
7 = A(Dpb[kT) (o/p)", (6.1)

where A ~ 21 and n = 3, though we later treat them as constants to be determined by experiment.

0, +p

I S R

CELL BOUNDARY
FORMATION SLIDIN'G\‘

P>

Ficure 10. Power-law creep. The cells which form are the basis of the model described in the text,
but the creep is complicated by grain-boundary sliding and by periodic recrystallization.

There are more sophisticated models for this power-law behaviour: viscous-glide creep
(Weertman 1957), dislocation-climb creep (Weertman 1968), and Nabarro creep (Nabarro
1967) are examples; the characteristics of many of the models, including that given above, are
discussed by Weertman (1970). All predict a steady-state creep equation of the form of equation
(6.1), which varies with temperature roughly as a diffusion coefficient (usually that for lattice
self-diffusion), and which depends on a power of the stress. ‘

These models are, at best, a description of one sort of power-law creep. Their weakness lies
in their inability to predict with any precision the constants 4 and (often) 7, which must at present
be regarded as empirical quantities to be determined experimentally. (The two are related;
Stocker & Ashby (1973) find, in a survey of the creep of some 50 materials, that

n~3+0.3lg4, (6.2)

a relation which may have usefulness in estimating values of n or 4 when one is known, but which
should be used with caution.) There are other difficulties. As the stress is raised above about
10-3 u, the power-law ceases to be a good description of experiments. Physically, this ‘power-law
breakdown’ is caused by an increasing contribution of dislocation glide to the strain-rate; it is
a broad transition from pure power-law behaviour (equation (6.1)) to the exponential stress-
dependence of plasticity (equation (4.1)). At high temperatures a second complication arises:
the material may recrystallize as it creeps (figure 10), the waves of recrystallization washing
out the cells, and giving repeated surges of primary creep.
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In spite of these difficulties, equation (6.1) describes well the creep of a wide variety of metals
and ceramics, provided that » and A are treated as material properties, to be determined by
experiment, and it suggests that pressure should affect creep mainly through its effect on D.
Experiments, reviewed in the next section, support this view.

6.2. Effect of pressure on power-law creep

There have been a limited number of careful creep tests in which pressure has been used as a
variable; they have been reviewed recently by McCormick & Ruoff (1970). Typical of them are
the observations of Chevalier, McCormick & Ruoff (1967), who studied the creep of indium
under a liquid pressure medium. Their observations are replotted in figure 11. When the pressure
was switched between two fixed values, the creep rate changed sharply but reversibly, returning
to its earlier value when the additional pressure was removed.

Ty — e e low pressure:
=M | [ p = 79MPa (0.79kbar);

I
I
| pIK=172%x10"3
I
|

creep ratefs—!

-_.u.l__l_:._i,__l.el_.l-—-i———— high pressure:
i p = 360 MPa (3.6kbar);
sk L L ) 1 1 I L 1 p/K =3.3x10"2
0 2 4 6 8

100 x creep strain

Ficure 11. The creep of indium under a superimposed hydrostatic pressure. The creep rate drops when the
pressureisapplied. Datareplotted from Chevalier, McCormick & Ruoff (196%7): T/ T3 = 0.87;0/E=1.6 x 105,

If the creep is diffusion-controlled, then we might expect that the main influence of pressure
would be through its effect on diffusion. This is characterized by the activation volume, so that
a comparison of activation volumes derived from diffusion and creep should show them to be
about equal, just as the activation energies are found to be. The available data are included in
table 5, where it can be seen that, when a comparison is possible, the activation volumes for power-
law creep are about the same as those for diffusion.

6.3. Creep data for olivine

Published creep data for natural and synthetic olivines span the temperature range from
900 to 1650 °C (0.55-0.9 Ty;) at strain-rates from 10-7 to 10~4/s, often under a confining pressure
of about 10kbar (1 GPa). The results are complicated by the fact that talc was sometimes used
as a pressure medium: above 800 °C it releases water, and water accelerates the creep of these
(and most other) silicates. However, other experiments avoided these problems, by the use of
a dry gas to apply pressure when it was required. The data in table 1 are based on these.

All investigators (Carter & Ave’ Lallemant 1970; Raleigh & Kirby 1970; Goetze & Brace
1972; Post & Griggs 1973; Kirby & Raleigh 1973; Kohlstedt & Goetze 1974; Durham & Goetze


http://rsta.royalsocietypublishing.org/

A

<
o
NI
olm
=
@)
O
= uwv

PHILOSOPHICAL
TRANSACTIONS
OF

A

—%

Py
‘//\\ \
A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FLOW AND FRACTURE IN THE UPPER MANTLE 81

1976; Durham, Goetze & Blake 19%76) observed power-law creep with a power which increased
from 3 atlow stresses to 5 or more at high. Many of the datawere recently re-analysed by Kohlstedt
& Goetze (1974), who showed them to be adequately described by the equation

7 =f(05) exp (- Qu:/RT), (6.3)

where @, the activation energy for creep, is 522 kJ/mol.

Following their approach, we have examined the function f (o) by normalizing all the data
for dry olivine to 1400 °C, using an activation energy of 522kJ/mol, as shown in figure 12. It
shows power-law behaviour, with # &~ 3 at low stresses, followed by a long transition as stress is
raised and glide contributes increasingly to the flow.

cquivalent axial stress, (0, — 073) [kbar

001 0.1 1 10

10 : ‘”V
107 S,

O Carter &
Ave’ Lallemant (1970)

- -

tn 10 /°°° O Goetze & Brace

Q @ o

3 . {/ (1972)

= . s ° © A Kirby & Raleigh

g e (1973)

@ 10 3 .:‘J & o ® Kohlstedt & Goetze

I o 8o s (1974)
° ‘I. o’ )
1078 1400°C y,

1070
1

10 100 1000

equivalent axial stress, (0, — 0/3)[MPa

Ficure 12. The creep of dry olivine. The data, normalized to a single temperature (1400°C) by using an
activation energy of 522kJ[mol, are replotted from the work of Kohlstedt & Goetze (1974).

6.4. Rate equation for power-law creep

Because there is no convincing model for this transition, we have chosen to describe the creep
of olivine by the sum of two power-laws:

oMb (06)? s 5) (__chHJV*)
'y"kT(Al(,u) +A2(ﬂ) exp ) (6.4)
The equation, evaluated by using the constants listed in table 1, is plotted onto figure 12 as a

full line, for zero pressure. In the calculations of § 8, the value of V* was varied between 0 and 2,.

6 Vol. 288. A.
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7. OTHER MECHANISMS

The four classes of mechanism described in §§ 3—6 are well enough understood to be modelled
in broad outline, but at least three important processes are omitted from the present treatment
because we do not yet understand them in sufficient detail to model them properly, and because
they are too poorly characterized experimentally to be included in a phenomenological way.
They are discussed in this section.

DIFFUSIVE

P e

Ficure 13. Fluid phase transport. A liquid film surrounding the granules: in the Earth’s crust, it might be water;
in the mantle, a basaltic melt. The film provides a high-mobility path for the transport of ions of the solid,
permitting creep, but its thickness at the critical points of contact is hard to calculate.

7.1. Fluid phase transport

The pore-space of partly consolidated minerals in the Earth’s crust is often filled with water.
Dissolved water can change the plastic properties of individual silicate crystals, although the
effect near room temperature is small. However, diffusive transport through a liquid is faster
than through a solid, so that the presence of a water film between the silicate granules in the
aggregate permits measurable creep by solution and re-deposition, even at ambient temperatures.
Deep in the mantle, the temperature is such that water has been driven off, but basaltic phases
of low melting point can provide a similar fast-diffusing liquid path (figure 13).

There have been a number of attempts to discuss and model the process (Durney 1972, 1976;
Elliot 1973; Stocker & Ashby 1973; Rutter 1976). They are all based on the idea, illustrated
by figure 13, that a deviatoric stress causes differences in pressure between points of contact
between the granules, and that this in turn leads to a gradient in chemical potential of ions of the
solid between points where the pressure is high and those where it is lower. If these ions first
dissolve in the fluid and then diffuse down the gradient and re-deposit on the grains, the grains
will change shape and the material as a whole will deform. The obvious parallel between this
and Coble creep (§5) is apparent in all the models: the fluid film simply replaces the grain
boundary as a high-diffusivity path.
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Itis in calculating the width of this path that the models are incomplete. A pressure difference
can exist around the grain surface only if the liquid is at some point squeezed out, or at least
reduced to a layer of little more than molecular thickness. It is only at these points that the
chemical potential is significantly raised, yet it is here that the highly diffusing layer has been
almost removed. The thickness of the layer and the solubility of the diffusing ions in it are crucial
quantities in calculating the rate of deformation: without them, no meaningful estimate can be
made.

The problem may have no easy answer. It appears to us that the most likely explanation for
the observed rates of flow in the presence of water films is either that a solid hydration product
forms on the grain surfaces which is porous and capable of permitting rapid ionic transport,
or that porous debris — clay particles have been suggested by Weyl (1959) —lie in the inter-
face and allow free liquid access. Both suggestions are illustrated in figure 13; they resolve the
problem of liquid access to an interface under compression, but they do little to make the model
quantitative.

7.2. Dynamic recrystallization

Above 0.6 Ty, minerals, like many metals, recrystallize as they creep. The new grain boundaries
sweeping through the material remove the cells and tangles of dislocations, softening the material
and allowing a new cycle of primary creep (figure 10). Metals, most of which have 5 easy slip
systems, creep faster when they recrystallize, though often the enhancement is slight (it depends
on the number of waves of recrystallization per unit creep strain). Typical observations on metals
can be found in the publications of Hardwick, Sellars & Tegart (1961), Hardwick & Tegart
(1961), Stiiwe (1965) and Nicolls & McCormick (1970).

Many non-metals have fewer than five easy slip systems, even at high temperatures. Although
we do not understand why, there is some evidence that dynamic recrystallization may have a
much more important effect on creep in these materials than it does on metals. Ice, for instance,
which has two easy slip systems (those in the basal plane) appears to recrystallize locally through-
out creep (see, for example, Steinemann 1958), and may in this way relieve internal stresses which
would otherwise lead to cracking.

7.3. Influence of a texture or fabric

Mechanisms of flow involving dislocation motion may be accelerated or decelerated by the
presence of a texture (which, if sufficiently perfect, tends to make the material behave like a single
crystal). The creep rate depends on the degree of perfection of the texture and on the angle between
the principal stresses and the preferred directions in it. We shall assume here that the texture is
not sufficiently perfect to alter the creep behaviour significantly.

8. DEFORMATION-DIAGRAMS AND FLOW IN THE UPPER MANTLE

There are, then, four broad classes of mechanism of flow: cataclasis, plasticity, diffusional
flow and power-law creep. All four can be studied in the laboratory, and all must be involved
in the deformation of the Earth’s crust and mantle, but in a given test, or at a given point in the
mantle, one mechanism will be dominant, accounting for most or all of the strain. This dominant
mechanism could be identified by evaluating the rate equations and comparing the strain-rate
each predicts, but it is far more convenient to use the equations to construct deformation
mechanism diagrams which allow the dominant mechanism to be identified, show the overall

6-2
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rate of flow, and allow the depths, pressures or temperatures at which changes of mechanisms
occur to be examined.

In laboratory tests the deviatoric stress, the temperature, and the pressure are all independent
variables; then the kind of map described in § 8.1 is most useful. It can be regarded as characteri-
zing the material (in this instance, olivine).

The temperature and pressure in the upper mantle, on the other hand, are related, though
the nature of the relation beneath a continent may differ from that, say, beneath an ocean. Then
more information is conveyed by the maps of the sort described in § 8.2.

~
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Ficure 14. A map for olivine with a grain size of 0.1 mm; zero pressure. The symbols identify experimental points,
and are labelled with the negative of the logarithm to the base 10 of the observed shear strain-rate. Cleavage
was suppressed to show the plasticity field; if a realistic value for o; were used, the diagram would be truncated
at the level marked ‘cleavage stress 5x 10~34°. Data: 4+, Evans (1976) hardness data; A, Carter & Ave’
Lallemant (1970) (peridotite, 15kbar); @, Durham ef al. (1976); A, Phakey et al. (19772) (single crystals,
hard direction); 0, Kohlstedt & Goetze (1974); -], Durham & Goetze (1976).
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8.1. Maps for olivine

The first type of map is shown in figure 14. Its axes are the normalized shear stress, o/u°
(where u° is the shear modulus at atmospheric pressure and ambient temperature), and hom-
ologous temperature 7Ty (where Ty is the melting temperature). The normalization has the
advantage of reducing maps for materials of the same crystal class and with similar bonding to a
single group (Ashby & Frost 1975).

The construction of the maps involves two steps. We first ask: in what field of stress and
temperature is a given mechanism dominant? The boundaries of the fields are obtained by
equating pairs of the rate equations and solving for stress as a function of temperature. Figure 14,
which describes polycrystalline olivine with a grain size of 0.1 mm, shows these fields; the
mechanisms which meet at a field boundary have equal rates there. The figure was constructed
from the rate equations listed in §§ 3-6 and the material constants for olivine given in table 1.

The second step is to calculate the net strain-rate at a given point on the diagram: it is the sum
of the contributions from each mechanism, provided they operate independently. Cataclasis
and diffusional flow are independent: at each point we add their contributions. However,
power-law creep and low-temperature plasticity are not: they reflect alternative ways in which
dislocations may move. In forming the sum, we include in it only the faster of these two. The
superposition law implied by this procedure is obviously over-simplified, but the uncertainty
in the rates of individual mechanisms makes more sophisticated superposition pointless. This
procedure allows us to plot contours of constant shear strain-rate onto the diagram, from
10~16/s to 1/s.

The stress axis describes either the simple shear stress or, when the stress field is more com-
plicated, the deviatoric stress (equation (1.3)). When this and the temperature are known, the
diagram gives the value of the shear strain-rate, or the equivalent shear strain-rate (equation
(1.6)), and identifies the mechanism by which the material is deforming.

Figure 14 was constructed for flow under zero pressure, but with cleavage artificially suppressed
(by making oy very large) to allow low-temperature plasticity to be shown. The map then shows
three fields: plasticity, power-law creep and diffusional flow, this last subdivided by a broken
line into Coble creep at lower temperatures and Nabarro—Herring creep at higher. If, instead,
oy is set equal to 5 x 103 40 (the value arrived at in § 3), the diagram is truncated at the level of
the horizontal line labelled ‘cleavage stress’. Above this line, the material fractures when sheared
under zero confining pressure.

Many of the useful data on the creep and plasticity of olivine are plotted on the diagram.
The symbols identify the investigators, and are labelled with numbers which are the negative
of the logarithm of the shear strain-rate (lg y); these numbers allow the observed strain-rates
to be compared directly with those computed from the rate equations. Because there is consider-
able scatter in the data, we found it best to construct the maps by an iterative procedure, adjusting
the constants to give a map which, in our judgement, best fitted the data. Figure 14, and the
constants of table 1, are the result.

The effect of a large pressure is shown in figure 15. It was constructed for a pressure of 0.1 K°
(81kbar), roughly the pressure at the base of the upper mantle. Cleavage was not artificially
suppressed, but, because of the effect described in § 3, it appears only at stress levels which are
inaccessible because plasticity intervenes. The rate of plasticity has itself been slowed by a
factor of 10® or more because of the pressure effects described in § 4, but this is equivalent to an
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increase in flow stress of only a factor of about 1.5. Diffusional flow and power-law creep too,
are affected, mainly because pressure slows diffusion on which both depend. Here the important
parameter is the activation volume V*, which for this figure was set equal to the volume occupied
by a single oxygen ion, 2;. As explained in § 5, the likely range for V*/£2, is from zero (represented
by figure 14) to 1 (figure 15). A comparison of the two figures shows a reduction of about 103
in the rate of creep.

The grain size most affects the rate of diffusional flow (§5): increasing the grain size slows
diffusional flow and moves the boundary separating it from power-law creep to lower stresses.
The grain size in the upper mantle has been discussed elsewhere (Stocker & Ashby 1973); it is
unlikely to be less than 0.1 mm, and because of this the size of the power-law creep field is unlikely
to be smaller than that shown on these and later figures.
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Ficure 15. A map for olivine, based on the same data as figure 14, but with a pressure of 0.1 K° (81 kbar) applied.
The cleavage stress has been raised by a factor of about 10 to 5 x 10~2 #; the stress required for plasticity has
increased by a factor of about 1.5 and the creep rates have decreased by a factor of about 103,
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8.2. Maps for the upper mantle

Within the upper mantle the pressure and the temperature increase with depth, the first in a
roughly linear way, the second in a way which reflects the steady flow of heat from the interior
to the surface. Since p and 7 are no longer independent, a single diagram can completely describe
the mechanical behaviour. We have used depth as the independent variable, relating pressure
and temperature to it by

PIKO = 7.9% 107 +3.2 x 104 4/K° (8.1)
and T =300+1579[1—exp (— 7.6 x 10-64)], (8.2)

where 4 is the depth in metres. The first equation identifies the pressure as that due to the
atmosphere plus a height 4 of rock of average density 3.25 x 103kg/m3. The second ensures that
the temperature is equal to 300K at the Earth’s surface, and increases with depth with an
initial gradient of 12 K/km, reaching the value 1850K at a depth of 500km; it is shown in
figure 16. Though reasonable, no claim is made that these equations accurately describe the
pressure and temperature of a certain part of the mantle: they are meant simply to illustrate
the method and the conclusions which can be drawn from it.

20

102 x temperature/K
p— —
S o

T T
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T

1 i 1

0 2 4
10-2 x depth/km

Ficure 16, The assumed way in which temperature varies with
depth in the upper mantle (see equation 8.2).

A map with depth as one axis is shown in figure 17. It describes the flow of olivine with a grain
size of 0.1 mm, under conditions defined by equations (8.1) and (8.2). In constructing this figure
the activation volume V* was set equal to zero (the lower bound); it is to be compared with the
next figure (figure 18) for which an activation volume equal to £, (the upper bound) was used.

The two figures illustrate the following points. Near the surface, cleavage is the dominant
mode: the mantle, when sheared, will deform by cataclasis rather than plastic flow, to the depth
of at least 20km, even at the slowest strain-rates. Below this, the rising pressure and temperature
combine to cause plasticity to replace cataclasis as the dominant flow mechanism. Below 100 km,
power-law creep becomes important, and remains so to a depth of 400 km, where olivine trans-
forms to a spinel-structured phase about which little is known. For this rather small grain size,
diffusional flow is an important mechanism at low stresses, but if the grain size is increased to
1 mm, it disappears from the diagrams entirely.
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The effects of the larger activation volume can be seen by comparing the two figures. The
second, with V* = €, shows creep rates which are slower by a factor of between a hundred and
a thousand than those of the first, and its strain-rate contours loop upwards slightly, because the
rising pressure tends to offset the effect of rising temperature; but perhaps the most important
point is that for this range of V'* the rate contours are very flat below 200km, meaning that the
viscosity of the upper mantle here is roughly independent of depth. This is in contrast to the
results of earlier calculations (Stocker & Ashby 1973) which showed a pronounced viscosity
minimum because they used values of V*/Q, of between 3 and 7, appropriate if SiO}~ were
the diffusing unit, but not if O~ is the rate-controlling species (as we now believe).

The depth at which cataclasis stops and plasticity starts is illustrated by the expanded segment
of figure 18 which is shown as figure 19. It illustrates first that the depth at which fracturing is
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Ficure 17. Olivine under upper-mantle conditions with V* = 0; cleavage stress = 5 x 10-3y. In this figure, depth
(below the Earth’s surface) has replaced temperature as the abscissa; temperature and pressure are both
related directly to it. The figure shows that, to a depth of about 30 km, cataclastic flow is the dominant mech-
anism. Below this, plasticity and creep replace fracturing as the dominant mechanisms.
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replaced by plasticity depends on the local strain-rate imposed on the mantle; for our standard
conditions (full lines on the figure) it is between 20 and 45 km. If we consider a standard strain-
rate — say 10~6/s — then the standard fracture stress of 5 x 10~2 x%leads to a critical depth of 32 km,
and is marked by an arrow on the figure. However, this depends on the pressure and temperature
distribution (equations (8.1) and (8.2)) and on the fracture stress oy. If the fracture stress is
increased to 102 ° or reduced to 2 x 10-3 4%, (both are marked on the figure), the depth varies
from 20 km to almost 50km (arrows). Itis even more sensitive to the temperature profile (equation
(8.2)). The one we have used may be broadly typical of much of the upper mantle, but where,
for instance, a plate is subducted and the descending matter cools its surroundings, the tem-
perature profile is depressed and the critical depth can be displaced to below 100 km.

It is tempting to associate the critical depth with the maximum depth at which catastrophic
shearing can take place, and it is certainly true that some discontinuity in behaviour must be
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Ficure 18. Olivine under upper-mantle conditions with V* = £,. The creep rates are slower by a factor of between

10% and 10° than those of figure 17. Note that the strain-rate contours are almost flat below 200 km.
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expected at this depth. However, as the olivine maps shown in figures 14 and 15 illustrate, a
small increase in temperature in the plasticity régime brings with it a very large increase in
strain rate: so adiabatic plastic shear, too, could lead to sudden flow.

Figure 19 also illustrates how the rolling criterion of §3 appears on the diagram. The shear
stress required for rolling depends more rapidly on pressure than does that for repeated cleavage
so that, while rolling is important near the surface, it does not (except for the largest values of
oy) determine the critical depth.
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Ficure 19. An enlarged portion of figure 18, illustrating the transition from cataclastic flow to plastic flow. The
depth at which this transition occurs depends on the strain-rate and on the fracture stress, ;. It also depends
on the temperature profile in the mantle, and will be different in regions where descending plates cool the
mantle locally.


http://rsta.royalsocietypublishing.org/

'\

o

A \
=\
L A

/|
AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

P\
N \
AL A

N

y \

/7

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FLOW AND FRACTURE IN THE UPPER MANTLE 91

9. SUMMARY AND CONCLUSIONS

A number of alternative mechanisms exist which permit flow in minerals and rocks confined
by a hydrostatic pressure. Some are well enough understood that they can be modelled approxi-
mately: repeated cleavage (cataclasis), low-temperature plasticity, diffusional flow, and power-
law creep are examples. Others are less well understood though they are no less important:
deformation in the presence of a fluid phase, for instance; and the effects of a texture, or of
dynamic recrystallization, on creep. Models for the better-understood of these mechanisms are
reviewed.

The mechanical behaviour of olivine is reviewed. Recent data are analysed in the framework
of the models, and methods are discussed for inferring data when none exist. A set of material
properties for olivine are deduced and listed as table 1.

The models and data are used to construct deformation diagrams of two types, shows as
figures 14 and 15, and as figures 17-19. The first can be regarded as characterizing the material,
the second as describing its behaviour under the conditions postulated to exist in the mantle.

The study shows that olivine is now a fairly well characterized material (among oxides) and
that the maps give a tolerably good description of its behaviour.

When the data and models are used to predict mantle behaviour, a number of conclusions
emerge:

(a) Cataclasis should be the dominant mode of flow to a depth of perhaps 35km, though this
depth varies with the assumed temperature profile in the mantle, with the strain-rate, and with
material properties, particularly the fracture stress oy.

(b) Below this is a region of plasticity. Because of the rapid dependence of strain-rate on
temperature in this region, and the large values of stress, adiabatic instabilities are more likely
here than at greater depths.

(¢) At greater depths, the dominant flow mechanism is power-law creep, with a contribution
from diffusional flow which becomes less as the activation volume is increased, and as the grain-
size is increased. Diffusional flow cannot be ruled out as the dominant mechanism in mantle
convection, though the most plausible values of V*/2; = 1and d > 0.1 mm make itseem unlikely.

(d) The data used here suggest that, at least below 200km, the upper mantle viscosity is
almost constant with depth, a result which may have implications for the scale of mantle
convection.

This work was carried out at the University of Cambridge, and at Harvard University during
1976. One of us (M.F.A.) wishes to thank the Division of Engineering and Applied Physics at
Harvard for their hospitality, help and stimulus during this period, and the other (R.A.V.)
wishes to thank the Science Research Council for support on contract number B/RG 8058.8.
Throughout the course of the work, we had numerous discussions with Professor R. O’Connell
of the Hoffmann Laboratory at Harvard, and we wish to thank him, Professor C. Goetze,
Dr B. Atkinson and Dr E. Rutter for their helpful and critical comments.
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Discussion

H. H. ScuLOESSIN (Department of Geophysics, University of Western Ontario, London, Ontario,
Canada). With regard to the deformation of bodies whose grains are in contact with a liquid
phase, it would seem that Gibbs’s theory of heterogeneous equilibrium of solids under all states
of stress and strain in contact with their solution or melt can provide a suitable basis for its
determination (J. W. Gibbs, Collected Works, vol. 1, ch. 3, 1928). Similar to the case of Nabarro—
Herring creep the deformation will depend on diffusive transport of matter from the stressed
faces to the unstressed (free) faces. However, in this particular case the transport will take place
through the liquid phase and its rate will be determined by the difference in chemical activity
(solubility) of the solid between stressed and free faces. The variation of steady state creep rate
with stress should be proportional to the change in activity. This, I suppose, leads to a hyperbolic
creep law.

E. H. Rurter (Geology Department, Imperial College, London SW'7). During his particularly lucid
review of the micromechanisms of flow and fracture, Professor Ashby referred to creep by diffusive
mass transfer via an intergranular fluid phase. The microstructures which result from such
diffusive transfer in low-grade metamorphic rocks are well known to geologists and are described
as being due to pressure solution (see, for example, Heald 1956; Ramsay 1967). Though he
mentioned the importance of diffusion path width in determining the kinetics of this process,
I felt that special attention should have been given to the question of the diffusivity in the
supposed intergranular fluid film. While the effective path width can probably be inferred to
within one order of magnitude from microstructural observations, the greatest uncertainty in
estimating the rate of rock deformation by this process must be due to uncertainty regarding the
magnitude of the diffusivity (Rutter 1976). There are no relevant experimental data to assist
here, and it would be wrong to use diffusivities measured for salts dissolved in large volumes o.
fluid. If we are reduced to guessing, errors of several orders of magnitude will arise.

Returning to the subject of the diffusion path width, it is relevant to point out that pressure
solution in rocks is often characterized by the development of transgranular planar zones
(stylolites), extending over many grain diameters and spaced by one or more grain diameters.
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Within these zones the less ‘mobile’ phases, usually the phyllosilicates, become progressively
concentrated. The fact that stylolite zones once nucleated are stable, suggests that very fine
grained phyllosilicates provide a region of enhanced diffusivity, in part by increasing the effective
path width and in part by their ability to adsorb pore water onto their surfaces (see, for example,
Heald 1956).
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K. H. G. AsuBeE (H. H. Wills Physics Department, University of Bristol, Bristol 8). Transmission
electron microscopy studies of deformed quartz, quartzites and other crystalline silicates demon-
strate that creep at moderate temperatures (600-1000K) and pressures (1-100 atm) is a con-
sequence of dislocation glide mechanisms. If olivine is representative of silicates in general, your
deformation map suggests that, in 0.1 mm grain size material, creep under the above conditions
should be by diffusion mechanisms. Would increase of grain size (to single crystal material in the
limit) extend the plasticity field to the régime for which laboratory data exist?

S. H. WHitE (Department of Geology, Royal School of Mines, Imperial College, London SW'T 2BP).
Professor Ashby has made a significant contribution to olivine deformation studies by considering
cataclastic flow. It is noted that this field is positioned mainly in a crustal environment. Leaving
aside the question of olivine stability during other than retrograde crustal deformations, the
extent of the cataclastic field could perhaps be more accurately determined if the effects of pore
fluid pressure were considered. The pore fluid pressure in the crust is normally considered to
equal the geostatic pressure (Turner 1968; Price 1975) and it has a pronounced effect on crustal
deformation and fracturing processes (Price 1975).

Carbon dioxide may exist in large quantities in the mantle (Roeder 1965; Green 1972) and
may be the important fluid phase during the deep crustal and upper mantle deformation of
olivine. Bubbles containing CO, are present around the grain boundaries of mantle derived
polycrystalline olivine rocks and they will influence grain-boundary deformation processes
within the mantle and fracture processes within the crust.
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S. A. F. MurreLL (Department of Geology, University College London, Gower Street, London WC1E
6BT). Pore pressures and dilatancy during the fracturing process play very important roéles in
the deformation of rocks. High fluid pressures may exist down to considerable depthsin the Earth,
and by the operation of the effective stress principle (Murrell 1964, 1966; Murrell & Digby 1970),
may allow fracture and cataclasis to take place at low shear stresses. On the other hand dilatancy
caused by the opening of micro-cracks in rock during the fracture process, even under high
confining pressures (Brace, Paulding & Scholz 1966), may when pore fluids are present under
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‘undrained’ conditions result in dilatancy hardening, the elimination of macroscopic faulting
accompanied by a stress-drop, and the development of more homogeneous processes of cata-
clastic deformation (Ismail & Murrell 19776). Dilatancy is also likely to play a réle in the movement
of pore fluids and therefore in the dynamics of faulting processes in the crust of the Earth (Nur,
Bell & Talwani 1973; Nur & Schulz 1973).
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A. Kerry, F.R.S. (Vice-Chancellor’s Office, University of Surrey, Guildford GU2 5XH ). The question
was raised in discussion: what is the limit to cataclasis, i.e. how far does the breakdown of the
rock mass by repeated fracturing into smaller pieces proceed? One possible answer is suggested
by experience which is described principally if not entirely in the patent literature, e.g. U.K.
Patents 137,3214 (1971) and 146,4243 (1973). Mixtures of hard spheres of a wide variety of
stony materials, such as chalk, glass beads, aggregate (flint) or china clay, show very high
packing densities and great ease of mixing provided that populations containing three or four
discrete sizes of particle are present in rather specific volume fractions. Such mixtures attain
packing fractions of above 80 9%, and are easily sheared. I interpret this as indicating very small
dilatancy hardening of the Reynolds type (see, for example, F. C. Frank (1966), Rev. Geophys.
4, 405) and if cataclasis proceeded until such an array of particles were produced, the array
would shear easily, perhaps with rather little further breakdown of particle size occurring. For
the relative volume fractions of such arrays showing high packing fractions and easy mixing,
the patent literature must be explored. Particles of the following approximate diameter ratios
1:3:7:14 at volume fractions of 40 %, 10 %, 10 %, 40 %, show the property I have referred to.
J. Ritter (1971) has described the size ratios (4pp. Polym. Symp. 15, 239, New York: Wiley) as
corresponding to those of baseballs, golf balls, acorns and sand.
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